organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2,2,4,4-Tetraphenyl-1,3-bis(3,3,5,5-tetramethyl-1,1-diphenyl-5-vinyltrisiloxan-1-yl)cyclodisilazane

Zhen Lv, Lina Dai, Xuezhong Zhang, Zhijie Zhang* and Zemin Xie

Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China

Correspondence e-mail: zhangzj@iccas.ac.cn

Received 12 April 2011; accepted 20 April 2011

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.006 Å; disorder in main residue; R factor = 0.072; wR factor = 0.169; data-to-parameter ratio = 16.3.

The title molecule, $C_{60}H_{70}N_2O_4Si_8$, lies on an inversion center. In the asymmetric unit, one of the phenyl rings is disordered over two sets of sites with refined occupancies 0.58 (2) and 0.42 (2). In addition, in two substitution sites of the terminal dimethyl(vinyl)silvl unit, a methyl group and the vinyl group are disordered over the same site with refined occupancies 0.523 (13) and 0.477 (13).

Related literature

For similar cyclodisilazanes to the title compound and their synthesis, see: Zhu et al. (2007).

Experimental

Crystal data

C₆

М Tr

a

b c

α β

$_{0}H_{70}N_{2}O_{4}Si_{8}$	$\gamma = 78.860 \ (8)^{\circ}$
r = 1107.90	V = 1561.0 (6) Å ³
iclinic, $P\overline{1}$	Z = 1
= 10.731 (2) Å	Mo $K\alpha$ radiation
= 11.021 (2) Å	$\mu = 0.22 \text{ mm}^{-1}$
= 13.859 (3) Å	$T = 173 { m K}$
= 88.320 (9)°	$0.41 \times 0.28 \times 0.2$
= 76.120 (6)°	

Data collection

Rigaku Saturn724+ CCD diffractometer Absorption correction: multi-scan (CrystalClear; Rigaku, 2007) $T_{\min} = 0.916, T_{\max} = 0.954$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.072$ $wR(F^2) = 0.169$ S = 1.116338 reflections 390 parameters

12950 measured reflections 6338 independent reflections 5389 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.040$

 \times 0.22 mm

74 restraints H-atom parameters constrained $\Delta \rho_{\rm max} = 0.55 \text{ e } \text{\AA}^ \Delta \rho_{\rm min} = -0.32$ e Å⁻³

Data collection: CrystalClear (Rigaku, 2007); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

The authors would like to thank the National Natural Science Foundation of China (grant No. 50803070) for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5235).

References

Rigaku (2007). CrystalClear. Rigaku Corporation, Tokyo, Japan. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122. Zhu, Y. P., Guo, L., Zhang, Z. J., Xie, Z. M. & Xu, C. H. (2007). J. Appl. Polym. Sci. 105, 749-756.

supplementary materials

Acta Cryst. (2011). E67, o1234 [doi:10.1107/S1600536811014863]

2,2,4,4-Tetraphenyl-1,3-bis(3,3,5,5-tetramethyl-1,1-diphenyl-5-vinyltrisiloxan-1-yl)cyclodisilazane

Z. Lv, L. Dai, X. Zhang, Z. Zhang and Z. Xie

Comment

Organocyclodisilazanes exhibit high thermal stability, and have been used to enhance the thermal properties of silicone rubbers (Zhu *et al.*, 2007). Different functional groups can be introduced to cyclodisilazanes to improve their reactivity.

The molecular structure of the title compound is shown in Fig. 1. The molecule lies on an inversion center. In the asymmetric unit, one of the phenyl rings is disordered over two sets of sites with refined occupancies 0.58 (2) and 0.42 (2). In addition, in the the terminal dimethyl(vinyl)silyl group one of the methyl groups and the vinyl group are disordered over their respective sites with refined occupancies 0.523 (13) and 0.477 (13).

Experimental

The reaction scheme is shown in Fig. 2. 2 g 1,3-bis-(hydroxydiphenylsilanyl)-2,2,4,4-tetraphenylcyclodisilazane was dissolved in 20 ml tetrahydrofuran and added dropwisely to 2 ml n-butyllithum (2.5 mol/*L* solution in n-hexane) at 263K, then warmed to room temperature. An excessive amount of 1-vinyl-3-chloro-1,1,3,3-tetramethyldisiloxane was added to the mixture. After stirring for 30 min, solvents and unreacted disiloxane were removed under reduced pressure. The crude product was recrystallized from n-hexane to give colorless crystal.

Refinement

All H atoms were located in difference maps but were constrained in a riding-model approximation with $U_{iso}(H) = 1.2U_{eq}(C_{aryl})$ or $U_{iso}(H) = 1.5U_{eq}(C_{methyl})$. C—H distances were constrained to 0.95 and 0.98 Å for aryl and methyl H atoms respectively.

Figures

Fig. 1. The molecular structure of the title compound shown with 30% ellipsoids. H atoms are not shown (symmetry code: (A) -x+1, -y+1, -z+1). The disorder is not shown.

Fig. 2. The synthesis of the title compound.

2,2,4,4-Tetraphenyl-1,3-bis(3,3,5,5-tetramethyl-1,1-diphenyl-5- vinyltrisiloxan-1-yl)cyclodisilazane

Crystal data	
$C_{60}H_{70}N_2O_4Si_8$	Z = 1
$M_r = 1107.90$	F(000) = 588
Triclinic, <i>P</i> T	$D_{\rm x} = 1.179 \ {\rm Mg \ m^{-3}}$
Hall symbol: -P 1	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 10.731 (2) Å	Cell parameters from 4640 reflections
b = 11.021 (2) Å	$\theta = 1.5 - 26.4^{\circ}$
c = 13.859 (3) Å	$\mu = 0.22 \text{ mm}^{-1}$
$\alpha = 88.320 \ (9)^{\circ}$	<i>T</i> = 173 K
$\beta = 76.120 \ (6)^{\circ}$	Block, colorless
$\gamma = 78.860 \ (8)^{\circ}$	$0.41 \times 0.28 \times 0.22 \text{ mm}$
V = 1561.0 (6) Å ³	

Data collection

ndent reflections
ions with $I > 2\sigma(I)$
$\theta_{\rm min} = 2.4^{\circ}$
3
3

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.072$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.169$	H-atom parameters constrained
<i>S</i> = 1.11	$w = 1/[\sigma^2(F_o^2) + (0.0572P)^2 + 1.4799P]$ where $P = (F_o^2 + 2F_c^2)/3$
6338 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
390 parameters	$\Delta \rho_{max} = 0.55 \text{ e} \text{ Å}^{-3}$
74 restraints	$\Delta \rho_{min} = -0.32 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

	x	У	Z	$U_{\rm iso}*/U_{\rm eq}$	Occ. (<1)
Si1	0.25363 (13)	0.87059 (11)	0.07043 (8)	0.0648 (3)	
Si2	0.35367 (9)	0.85862 (8)	0.26534 (7)	0.0431 (2)	
Si3	0.44457 (8)	0.58120 (7)	0.30819 (6)	0.0318 (2)	
Si4	0.49207 (8)	0.61058 (7)	0.52203 (6)	0.0325 (2)	
01	0.3102 (4)	0.8299 (3)	0.1668 (2)	0.0902 (11)	
02	0.3845 (2)	0.72946 (19)	0.32207 (15)	0.0411 (5)	
N1	0.4736 (2)	0.5313 (2)	0.42053 (17)	0.0314 (5)	
C4	0.3722 (5)	0.7923 (5)	-0.0386 (3)	0.0848 (15)	
H4A	0.3830	0.7025	-0.0303	0.127*	
H4B	0.4565	0.8174	-0.0451	0.127*	
H4C	0.3402	0.8151	-0.0984	0.127*	
C5	0.2206 (6)	0.9597 (5)	0.3495 (4)	0.111 (2)	
H5A	0.1435	0.9209	0.3658	0.167*	
H5B	0.1995	1.0389	0.3175	0.167*	
H5C	0.2471	0.9737	0.4105	0.167*	
C6	0.5004 (6)	0.9265 (6)	0.2308 (5)	0.125 (3)	
H6A	0.5695	0.8703	0.1848	0.187*	
H6B	0.5300	0.9400	0.2906	0.187*	
H6C	0.4803	1.0058	0.1985	0.187*	
C7	0.3206 (3)	0.5015 (3)	0.2770 (2)	0.0361 (6)	
C8	0.3566 (3)	0.3802 (3)	0.2406 (2)	0.0452 (8)	
H8A	0.4461	0.3409	0.2266	0.054*	
C9	0.2644 (4)	0.3153 (4)	0.2242 (3)	0.0568 (9)	
H9A	0.2910	0.2322	0.2002	0.068*	
C10	0.1356 (4)	0.3712 (4)	0.2427 (3)	0.0636 (11)	
H10A	0.0727	0.3266	0.2315	0.076*	
C11	0.0964 (4)	0.4913 (4)	0.2774 (3)	0.0625 (11)	
H11A	0.0068	0.5301	0.2895	0.075*	
C12	0.1883 (3)	0.5556 (4)	0.2945 (3)	0.0500 (8)	
H12A	0.1604	0.6386	0.3188	0.060*	
C13	0.5940 (3)	0.5541 (3)	0.2047 (2)	0.0390 (7)	
C14	0.7229 (9)	0.5085 (12)	0.2155 (7)	0.046 (2)	0.58 (2)
H14	0.7364	0.4915	0.2802	0.055*	0.58 (2)
C15	0.8279 (8)	0.4885 (15)	0.1357 (6)	0.060 (3)	0.58 (2)
H15	0.9133	0.4631	0.1462	0.072*	0.58 (2)
C16	0.8121 (10)	0.5046 (13)	0.0405 (8)	0.054 (2)	0.58 (2)
H16	0.8851	0.4852	-0.0147	0.064*	0.58 (2)
C14'	0.7159 (15)	0.5652 (18)	0.2198 (11)	0.056 (4)	0.42 (2)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

supplementary materials

H14'	0.7247	0.5753	0.2856	0.067*	0.42 (2)
C15'	0.8242 (12)	0.562 (2)	0.1404 (9)	0.065 (4)	0.42 (2)
H15'	0.9082	0.5607	0.1520	0.078*	0.42 (2)
C16'	0.8082 (16)	0.5605 (18)	0.0437 (12)	0.061 (4)	0.42 (2)
H16'	0.8796	0.5671	-0.0107	0.073*	0.42 (2)
C17	0.6879 (4)	0.5495 (4)	0.0261 (3)	0.0604 (10)	
H17A	0.6763	0.5714	-0.0384	0.072*	
C18	0.5815 (3)	0.5621 (3)	0.1065 (2)	0.0489 (8)	
H18A	0.4963	0.5769	0.0947	0.059*	
C19	0.3401 (3)	0.7168 (3)	0.5883 (2)	0.0379 (7)	
C20	0.2205 (3)	0.7236 (3)	0.5635 (2)	0.0455 (8)	
H20A	0.2164	0.6758	0.5088	0.055*	
C21	0.1073 (4)	0.7988 (3)	0.6170 (3)	0.0542 (9)	
H21A	0.0269	0.8016	0.5988	0.065*	
C22	0.1108 (4)	0.8692 (3)	0.6962 (3)	0.0571 (10)	
H22A	0.0331	0.9202	0.7328	0.069*	
C23	0.2274 (4)	0.8653 (3)	0.7220 (3)	0.0596 (10)	
H23A	0.2301	0.9137	0.7768	0.072*	
C24	0.3415 (4)	0.7910 (3)	0.6683 (3)	0.0488 (8)	
H24A	0.4218	0.7906	0.6861	0.059*	
C25	0.6302 (3)	0.6964 (3)	0.4937 (2)	0.0396 (7)	
C26	0.6095 (4)	0.8199 (4)	0.4685 (3)	0.0632 (11)	
H26A	0.5233	0.8626	0.4695	0.076*	
C27	0.7126 (5)	0.8820 (4)	0.4419 (4)	0.0888 (16)	
H27A	0.6965	0.9666	0.4244	0.107*	
C28	0.8367 (5)	0.8235 (5)	0.4405 (4)	0.0767 (13)	
H28A	0.9069	0.8670	0.4216	0.092*	
C29	0.8607 (4)	0.7013 (4)	0.4664 (3)	0.0577 (10)	
H29A	0.9470	0.6603	0.4667	0.069*	
C30	0.7575 (3)	0.6387 (3)	0.4920 (2)	0.0475 (8)	
H30A	0.7745	0.5539	0.5088	0.057*	
C1	0.0010 (15)	0.8122 (14)	0.1453 (11)	0.143 (6)	0.523 (13)
H1A	0.0172	0.7954	0.2092	0.172*	0.523 (13)
H1B	-0.0805	0.8042	0.1331	0.172*	0.523 (13)
C2	0.0907 (15)	0.8463 (12)	0.0740 (10)	0.088 (4)	0.523 (13)
H2	0.0658	0.8610	0.0127	0.105*	0.523 (13)
C3	0.2438 (10)	1.0414 (7)	0.0555 (6)	0.047 (2)	0.523 (13)
H3A	0.1811	1.0851	0.1130	0.071*	0.523 (13)
H3B	0.2151	1.0672	-0.0053	0.071*	0.523 (13)
H3C	0.3302	1.0613	0.0509	0.071*	0.523 (13)
C1'	0.269 (2)	1.105 (2)	0.0102 (17)	0.202 (11)	0.477 (13)
H1'1	0.3555	1.0657	-0.0206	0.242*	0.477 (13)
H1'2	0.2415	1.1916	0.0029	0.242*	0.477 (13)
C2'	0.187 (2)	1.041 (2)	0.0620 (16)	0.147 (9)	0.477 (13)
H2'	0.0998	1.0778	0.0937	0.177*	0.477 (13)
 C3'	0 1027 (19)	0 797 (2)	0 0976 (15)	0 122 (7)	0 477 (13)
H3'1	0.0388	0.8382	0 1558	0 183*	0.477(13)
H3'2	0 1276	0 7090	0 1111	0 183*	0.477(13)
H3'3	0.0638	0.8060	0.0400	0.183*	0.477(13)
11.5 5	0.0050	0.0000	0.0700	0.105	0.777 (15)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Si1	0.0854 (9)	0.0687 (7)	0.0447 (6)	-0.0075 (6)	-0.0297 (6)	0.0025 (5)
Si2	0.0505 (5)	0.0395 (5)	0.0392 (5)	-0.0033 (4)	-0.0152 (4)	0.0057 (4)
Si3	0.0321 (4)	0.0377 (4)	0.0253 (4)	-0.0043 (3)	-0.0083 (3)	0.0021 (3)
Si4	0.0369 (4)	0.0349 (4)	0.0267 (4)	-0.0082 (3)	-0.0087 (3)	0.0027 (3)
01	0.164 (3)	0.0658 (19)	0.0599 (19)	-0.024 (2)	-0.064 (2)	0.0151 (15)
02	0.0486 (13)	0.0378 (12)	0.0338 (11)	-0.0020 (9)	-0.0093 (9)	0.0046 (9)
N1	0.0355 (13)	0.0341 (13)	0.0264 (12)	-0.0079 (10)	-0.0098 (10)	0.0009 (9)
C4	0.109 (4)	0.082 (3)	0.053 (3)	0.007 (3)	-0.022 (3)	0.007 (2)
C5	0.144 (5)	0.077 (3)	0.071 (3)	0.053 (3)	-0.005 (3)	0.006 (3)
C6	0.106 (4)	0.127 (5)	0.170 (6)	-0.065 (4)	-0.064 (4)	0.101 (5)
C7	0.0369 (16)	0.0471 (18)	0.0243 (14)	-0.0078 (13)	-0.0077 (12)	0.0034 (12)
C8	0.051 (2)	0.052 (2)	0.0345 (16)	-0.0103 (15)	-0.0155 (14)	0.0023 (14)
C9	0.076 (3)	0.053 (2)	0.049 (2)	-0.0226 (19)	-0.0210 (19)	-0.0023 (16)
C10	0.068 (3)	0.089 (3)	0.050 (2)	-0.045 (2)	-0.0208 (19)	0.007 (2)
C11	0.039 (2)	0.094 (3)	0.058 (2)	-0.018 (2)	-0.0143 (17)	-0.003 (2)
C12	0.0349 (17)	0.062 (2)	0.053 (2)	-0.0062 (15)	-0.0121 (15)	-0.0067 (16)
C13	0.0381 (17)	0.0496 (18)	0.0278 (15)	-0.0054 (14)	-0.0076 (12)	0.0044 (13)
C14	0.032 (3)	0.067 (6)	0.037 (4)	-0.010 (4)	-0.009 (3)	0.011 (4)
C15	0.034 (3)	0.095 (7)	0.048 (4)	-0.011 (4)	-0.007 (3)	0.009 (4)
C16	0.040 (4)	0.071 (6)	0.042 (4)	-0.012 (4)	0.005 (3)	0.006 (5)
C14'	0.049 (5)	0.076 (8)	0.035 (5)	0.003 (6)	-0.010 (4)	-0.003 (6)
C15'	0.045 (5)	0.098 (9)	0.053 (5)	-0.019 (6)	-0.012 (4)	0.007 (6)
C16'	0.058 (6)	0.072 (8)	0.044 (5)	-0.008 (6)	-0.002 (4)	0.010 (6)
C17	0.050 (2)	0.101 (3)	0.0295 (17)	-0.017 (2)	-0.0073 (15)	0.0096 (18)
C18	0.0416 (18)	0.072 (2)	0.0311 (16)	-0.0078 (16)	-0.0085 (14)	0.0045 (15)
C19	0.0443 (17)	0.0364 (16)	0.0327 (15)	-0.0079 (13)	-0.0086 (13)	0.0032 (12)
C20	0.0467 (19)	0.0465 (19)	0.0401 (18)	-0.0099 (15)	-0.0024 (14)	-0.0070 (14)
C21	0.0421 (19)	0.060 (2)	0.055 (2)	-0.0064 (16)	-0.0035 (16)	-0.0028 (17)
C22	0.057 (2)	0.047 (2)	0.051 (2)	0.0069 (17)	0.0053 (17)	-0.0043 (16)
C23	0.078 (3)	0.047 (2)	0.045 (2)	0.0090 (18)	-0.0144 (19)	-0.0126 (16)
C24	0.060 (2)	0.0404 (18)	0.0448 (19)	0.0044 (15)	-0.0214 (16)	-0.0045 (14)
C25	0.0485 (18)	0.0440 (18)	0.0308 (15)	-0.0164 (14)	-0.0124 (13)	0.0038 (12)
C26	0.066 (3)	0.057 (2)	0.077 (3)	-0.0246 (19)	-0.029 (2)	0.024 (2)
C27	0.087 (4)	0.066 (3)	0.130 (5)	-0.043 (3)	-0.041 (3)	0.046 (3)
C28	0.073 (3)	0.082 (3)	0.089 (3)	-0.052 (3)	-0.019 (2)	0.017 (3)
C29	0.046 (2)	0.076 (3)	0.053 (2)	-0.0228 (18)	-0.0060 (16)	-0.0019 (19)
C30	0.0470 (19)	0.054 (2)	0.0413 (18)	-0.0131 (15)	-0.0065 (15)	-0.0004 (15)
C1	0.144 (10)	0.154 (10)	0.133 (9)	-0.024 (8)	-0.039 (8)	0.000 (7)
C2	0.099 (7)	0.080 (7)	0.089 (7)	-0.026 (6)	-0.026 (6)	0.003 (6)
C3	0.063 (5)	0.039 (4)	0.042 (4)	-0.001 (3)	-0.025 (3)	0.009 (3)
C1'	0.222 (14)	0.194 (13)	0.196 (14)	-0.045 (9)	-0.055 (9)	-0.013 (9)
C2'	0.146 (12)	0.171 (12)	0.129 (11)	-0.044 (9)	-0.027 (8)	-0.016 (8)
C3'	0.118 (10)	0.127 (11)	0.119 (10)	-0.028 (8)	-0.025 (8)	0.018 (8)

Geometric parameters (Å, °)

Si1—O1	1.613 (3)	C16—C17	1.389 (12)
Si1—C2	1.808 (15)	С16—Н16	0.9500
Si1—C4	1.837 (5)	C14'—C15'	1.392 (19)
Si1—C3	1.874 (8)	C14'—H14'	0.9500
Si1—C2'	1.89 (2)	C15'—C16'	1.39 (2)
Si1—C3'	1.90 (2)	С15'—Н15'	0.9500
Si2—O1	1.603 (3)	C16'—C17	1.398 (18)
Si2—O2	1.622 (2)	С16'—Н16'	0.9500
Si2—C5	1.817 (5)	C17—C18	1.379 (5)
Si2—C6	1.828 (5)	С17—Н17А	0.9500
Si3—O2	1.635 (2)	C18—H18A	0.9500
Si3—N1	1.715 (2)	C19—C20	1.394 (5)
Si3—C13	1.859 (3)	C19—C24	1.402 (4)
Si3—C7	1.865 (3)	C20—C21	1.388 (5)
Si4—N1	1.748 (2)	C20—H20A	0.9500
Si4—N1 ⁱ	1.749 (2)	C21—C22	1.374 (5)
Si4—C19	1.865 (3)	C21—H21A	0.9500
Si4—C25	1.867 (3)	C22—C23	1.374 (6)
Si4—Si4 ⁱ	2.4940 (17)	C22—H22A	0.9500
N1—Si4 ⁱ	1.749 (2)	C23—C24	1.391 (5)
C4—H4A	0.9800	C23—H23A	0.9500
C4—H4B	0.9800	C24—H24A	0.9500
C4—H4C	0.9800	C25—C26	1.385 (5)
C5—H5A	0.9800	C25—C30	1.386 (5)
С5—Н5В	0.9800	C26—C27	1.382 (6)
C5—H5C	0.9800	C26—H26A	0.9500
С6—Н6А	0.9800	C27—C28	1.360 (6)
С6—Н6В	0.9800	С27—Н27А	0.9500
С6—Н6С	0.9800	C28—C29	1.375 (6)
C7—C8	1.393 (4)	C28—H28A	0.9500
C7—C12	1.395 (4)	C29—C30	1.386 (5)
C8—C9	1.390 (5)	С29—Н29А	0.9500
С8—Н8А	0.9500	C30—H30A	0.9500
C9—C10	1.367 (6)	C1—C2	1.306 (9)
С9—Н9А	0.9500	C1—H1A	0.9500
C10-C11	1.373 (6)	C1—H1B	0.9500
C10—H10A	0.9500	С2—Н2	0.9500
C11—C12	1.388 (5)	С3—НЗА	0.9800
C11—H11A	0.9500	С3—Н3В	0.9800
C12—H12A	0.9500	С3—НЗС	0.9800
C13—C18	1.397 (4)	C1'—C2'	1.298 (10)
C13—C14'	1.402 (17)	C1'—H1'1	0.9500
C13—C14	1.419 (11)	C1'—H1'2	0.9500
C14—C15	1.365 (12)	C2'—H2'	0.9500
C14—H14	0.9500	C3'—H3'1	0.9800

C15—C16	1.372 (14)	C3'—H3'2	0.9800
С15—Н15	0.9500	C3'—H3'3	0.9800
O1—Si1—C2	116.9 (5)	C13—C14—H14	119.1
O1—Si1—C4	107.6 (2)	C14—C15—C16	121.1 (8)
C2—Si1—C4	110.8 (5)	C14—C15—H15	119.5
O1—Si1—C3	108.2 (3)	С16—С15—Н15	119.5
C2—Si1—C3	104.9 (5)	C15—C16—C17	119.0 (8)
C4—Si1—C3	108.1 (3)	C15—C16—H16	120.5
O1—Si1—C2'	115.7 (7)	C17—C16—H16	120.5
C2—Si1—C2'	86.9 (8)	C15'—C14'—C13	121.2 (12)
C4—Si1—C2'	118.0 (7)	C15'—C14'—H14'	119.4
C3—Si1—C2'	18.1 (7)	C13—C14'—H14'	119.4
O1—Si1—C3'	100.8 (6)	C14'—C15'—C16'	119.3 (13)
C2—Si1—C3'	19.4 (7)	C14'—C15'—H15'	120.4
C4—Si1—C3'	108.9 (7)	С16'—С15'—Н15'	120.4
C3—Si1—C3'	122.4 (7)	C15'—C16'—C17	120.5 (12)
C2'—Si1—C3'	104.3 (8)	С15'—С16'—Н16'	119.7
O1—Si2—O2	108.31 (14)	C17—C16'—H16'	119.7
O1—Si2—C5	110.3 (2)	C18—C17—C16	119.3 (5)
O2—Si2—C5	107.30 (19)	C18—C17—C16'	117.6 (7)
O1—Si2—C6	109.3 (3)	C16—C17—C16'	25.4 (6)
O2—Si2—C6	109.92 (19)	С18—С17—Н17А	120.4
C5—Si2—C6	111.7 (3)	С16—С17—Н17А	120.4
O2—Si3—N1	106.34 (11)	C16'—C17—H17A	115.8
O2—Si3—C13	109.79 (13)	C17—C18—C13	122.6 (3)
N1—Si3—C13	113.21 (13)	C17—C18—H18A	118.7
O2—Si3—C7	108.97 (13)	C13—C18—H18A	118.7
N1—Si3—C7	109.71 (12)	C20—C19—C24	117.1 (3)
C13—Si3—C7	108.74 (14)	C20—C19—Si4	122.4 (2)
N1—Si4—N1 ⁱ	89.00 (11)	C24—C19—Si4	120.5 (2)
N1—Si4—C19	114.02 (13)	C21—C20—C19	121.4 (3)
N1 ⁱ —Si4—C19	114.79 (12)	C21—C20—H20A	119.3
N1—Si4—C25	114.72 (13)	C19—C20—H20A	119.3
N1 ⁱ —Si4—C25	114.17 (13)	C22—C21—C20	120.4 (4)
C19—Si4—C25	109.14 (14)	C22—C21—H21A	119.8
N1—Si4—Si4 ⁱ	44.52 (8)	C20—C21—H21A	119.8
N1 ⁱ —Si4—Si4 ⁱ	44.48 (8)	C23—C22—C21	119.6 (3)
$C19$ — $Si4$ — $Si4^i$	125.40 (11)	C23—C22—H22A	120.2
C25—Si4—Si4 ⁱ	125.46 (11)	C21—C22—H22A	120.2
Si2—O1—Si1	153.0 (2)	C22—C23—C24	120.4 (3)
Si2Si3	145 38 (14)	C22—C23—H23A	119.8
Si3—N1—Si4	131.82 (15)	$C_{24} - C_{23} - H_{23A}$	119.8
$Si2$ N1 $Si4^{i}$	137.03 (14)	C^{23} C^{24} C^{19}	121 1 (3)
	01.00(11)	$C^{22} = C^{24} + D^{24}$	110.5
S_{14} N_{1} S_{14}	91.00 (11) 100.5	$C_{23} - C_{24} - \Pi_{24A}$	119.5
511—C4—H4A Si1—C4—H4D	109.5	С19—С24—Н24А	117.2 (2)
	109.5	$C_{20} = C_{20} = C_{30}$	117.5 (3)
H4A—C4—H4B	109.5	C20-C25-S14	120.6 (3)

supplementary materials

Si1—C4—H4C	109.5	C30-C25-Si4	122.0 (2)
H4A—C4—H4C	109.5	C27—C26—C25	120.9 (4)
H4B—C4—H4C	109.5	С27—С26—Н26А	119.6
Si2—C5—H5A	109.5	С25—С26—Н26А	119.6
Si2—C5—H5B	109.5	C28—C27—C26	120.8 (4)
H5A—C5—H5B	109.5	C28—C27—H27A	119.6
Si2—C5—H5C	109.5	С26—С27—Н27А	119.6
H5A—C5—H5C	109.5	C27—C28—C29	120.0 (4)
H5B—C5—H5C	109.5	C27—C28—H28A	120.0
Si2—C6—H6A	109.5	C29—C28—H28A	120.0
Si2—C6—H6B	109.5	C28—C29—C30	119.2 (4)
Н6А—С6—Н6В	109.5	С28—С29—Н29А	120.4
Si2—C6—H6C	109.5	С30—С29—Н29А	120.4
Н6А—С6—Н6С	109.5	C29—C30—C25	121.8 (3)
H6B—C6—H6C	109.5	С29—С30—Н30А	119.1
C8—C7—C12	117.0 (3)	С25—С30—Н30А	119.1
C8—C7—Si3	120.2 (2)	C2-C1-H1A	120.0
C12—C7—Si3	122.7 (2)	C2-C1-H1B	120.0
C9—C8—C7	121.4 (3)	H1A—C1—H1B	120.0
С9—С8—Н8А	119.3	C1—C2—Si1	131.9 (13)
С7—С8—Н8А	119.3	C1—C2—H2	114.1
С10—С9—С8	119.9 (4)	Si1—C2—H2	114.1
С10—С9—Н9А	120.0	Si1—C3—H3A	109.5
С8—С9—Н9А	120.0	Si1—C3—H3B	109.5
C9—C10—C11	120.4 (3)	НЗА—СЗ—НЗВ	109.5
С9—С10—Н10А	119.8	Si1—C3—H3C	109.5
C11-C10-H10A	119.8	НЗА—СЗ—НЗС	109.5
C10-C11-C12	119.6 (4)	НЗВ—СЗ—НЗС	109.5
C10-C11-H11A	120.2	C2'—C1'—H1'1	120.0
C12—C11—H11A	120.2	C2'—C1'—H1'2	120.0
C11—C12—C7	121.6 (4)	H1'1—C1'—H1'2	120.0
C11—C12—H12A	119.2	C1'—C2'—Si1	116 (2)
C7—C12—H12A	119.2	C1'—C2'—H2'	122.1
C18—C13—C14'	116.4 (7)	Si1—C2'—H2'	122.1
C18—C13—C14	114.9 (5)	Si1—C3'—H3'1	109.5
C14'—C13—C14	25.3 (6)	Si1—C3'—H3'2	109.5
C18—C13—Si3	119.4 (2)	H3'1—C3'—H3'2	109.5
C14'—C13—Si3	121.1 (6)	Si1—C3'—H3'3	109.5
C14—C13—Si3	125.1 (4)	H3'1—C3'—H3'3	109.5
C15—C14—C13	121.9 (8)	H3'2—C3'—H3'3	109.5
C15—C14—H14	119.1		
O2—Si2—O1—Si1	171.8 (6)	C14—C13—C14'—C15'	82 (2)
C5—Si2—O1—Si1	54.7 (7)	Si3—C13—C14'—C15'	-171.0 (9)
C6—Si2—O1—Si1	-68.4 (7)	C13—C14'—C15'—C16'	6.8 (19)
C2—Si1—O1—Si2	-108.4 (8)	C14'—C15'—C16'—C17	-7(2)
C4—Si1—O1—Si2	126.1 (6)	C15-C16-C17-C18	-8.1 (12)
C3—Si1—O1—Si2	9.6 (8)	C15-C16-C17-C16'	85 (2)
C2'—Si1—O1—Si2	-8.2 (10)	C15'—C16'—C17—C18	11.2 (15)
C3'—Si1—O1—Si2	-119.9 (9)	C15'—C16'—C17—C16	-89 (2)

O1—Si2—O2—Si3	36.2 (3)	C16-C17-C18-C13	12.4 (9)
C5—Si2—O2—Si3	155.2 (3)	C16'-C17-C18-C13	-16.5 (11)
C6—Si2—O2—Si3	-83.2 (4)	C14'—C13—C18—C17	16.4 (10)
N1—Si3—O2—Si2	163.1 (2)	C14—C13—C18—C17	-11.7 (8)
C13—Si3—O2—Si2	40.3 (3)	Si3-C13-C18-C17	176.5 (3)
C7—Si3—O2—Si2	-78.7 (3)	N1—Si4—C19—C20	5.1 (3)
O2—Si3—N1—Si4	-19.6 (2)	N1 ⁱ —Si4—C19—C20	-95.6 (3)
C13—Si3—N1—Si4	101.0 (2)	C25—Si4—C19—C20	134.8 (3)
C7—Si3—N1—Si4	-137.33 (19)	Si4 ⁱ —Si4—C19—C20	-45.1 (3)
O2—Si3—N1—Si4 ⁱ	166.09 (19)	N1—Si4—C19—C24	-176.9 (2)
C13—Si3—N1—Si4 ⁱ	-73.3 (2)	N1 ⁱ —Si4—C19—C24	82.4 (3)
C7—Si3—N1—Si4 ⁱ	48.4 (2)	C25—Si4—C19—C24	-47.2 (3)
N1 ⁱ —Si4—N1—Si3	-176.1 (3)	Si4 ⁱ —Si4—C19—C24	132.9 (2)
C19—Si4—N1—Si3	67.1 (2)	C24—C19—C20—C21	-1.3 (5)
C25—Si4—N1—Si3	-59.8 (2)	Si4—C19—C20—C21	176.8 (3)
Si4 ⁱ —Si4—N1—Si3	-176.1 (3)	C19—C20—C21—C22	0.3 (6)
N1 ⁱ —Si4—N1—Si4 ⁱ	0.0	C20—C21—C22—C23	0.3 (6)
C19—Si4—N1—Si4 ⁱ	-116.82 (13)	C21—C22—C23—C24	0.2 (6)
C25—Si4—N1—Si4 ⁱ	116.28 (14)	C22—C23—C24—C19	-1.3 (6)
O2—Si3—C7—C8	166.1 (2)	C20-C19-C24-C23	1.8 (5)
N1—Si3—C7—C8	-77.9 (3)	Si4—C19—C24—C23	-176.3 (3)
C13—Si3—C7—C8	46.4 (3)	N1—Si4—C25—C26	93.3 (3)
O2—Si3—C7—C12	-18.2 (3)	N1 ⁱ —Si4—C25—C26	-166.0 (3)
N1—Si3—C7—C12	97.9 (3)	C19—Si4—C25—C26	-36.0 (3)
C13—Si3—C7—C12	-137.8 (3)	Si4 ⁱ —Si4—C25—C26	143.9 (3)
C12—C7—C8—C9	-1.2 (5)	N1—Si4—C25—C30	-83.4 (3)
Si3—C7—C8—C9	174.8 (3)	N1 ⁱ —Si4—C25—C30	17.3 (3)
C7—C8—C9—C10	0.9 (5)	C19—Si4—C25—C30	147.3 (3)
C8—C9—C10—C11	0.0 (6)	Si4 ⁱ —Si4—C25—C30	-32.9 (3)
C9—C10—C11—C12	-0.6 (6)	C30—C25—C26—C27	0.6 (6)
C10-C11-C12-C7	0.3 (6)	Si4—C25—C26—C27	-176.3 (4)
C8—C7—C12—C11	0.6 (5)	C25—C26—C27—C28	-0.5 (8)
Si3—C7—C12—C11	-175.3 (3)	C26—C27—C28—C29	-0.4 (8)
O2—Si3—C13—C18	-76.5 (3)	C27—C28—C29—C30	1.1 (7)
N1—Si3—C13—C18	164.8 (3)	C28—C29—C30—C25	-1.0 (6)
C7—Si3—C13—C18	42.6 (3)	C26—C25—C30—C29	0.1 (5)
O2—Si3—C13—C14'	82.7 (10)	Si4—C25—C30—C29	176.9 (3)
N1—Si3—C13—C14'	-36.0 (10)	O1—Si1—C2—C1	8.0 (18)
C7—Si3—C13—C14'	-158.2 (10)	C4—Si1—C2—C1	131.8 (15)
O2—Si3—C13—C14	112.6 (7)	C3—Si1—C2—C1	-111.8 (16)
N1—Si3—C13—C14	-6.0 (7)	C2'—Si1—C2—C1	-109.3 (17)
C7—Si3—C13—C14	-128.3 (7)	C3'—Si1—C2—C1	44 (3)
C18—C13—C14—C15	7.4 (10)	O1—Si1—C2'—C1'	94.4 (19)
C14'—C13—C14—C15	-92 (2)	C2—Si1—C2'—C1'	-147 (2)
Si3—C13—C14—C15	178.7 (7)	C4—Si1—C2'—C1'	-35 (2)
C13-C14-C15-C16	-4.1 (14)	C3—Si1—C2'—C1'	25.3 (18)

C14—C15—C16—C17	4.2 (14)	C3'—Si1—C2'—C1'	-155.9 (19)
C18—C13—C14'—C15'	-11.2 (15)		
Symmetry codes: (i) $-x+1, -y+1, -z+1$.			

